Good programming practices

LING 334
Spring 2017

Klinton Bicknell
(adapted from version by

Dr. Bozena Pajak, now @ Duolingo)

Good programming practices

e Why are we talking about this?

— It’s very likely you’ll keep programming beyond
this class (not just in Python)

— Good programming skills are in high demand
— |t’s best to learn good habits early on

Programming (in general)

“There are only two kinds of programming
languages: the ones people complain about
and the ones nobody uses”

(Bjarne Stroustrup, creator of C++)

Programming (in general)

e Python is just one language (and people
complain about it)

e But it’s easy to learn and very widely used

e And it teaches you basic programming
principles useful for other languages (R,
JavaScript, Matlab, ...)

e Many programming languages are similar...

Programming (in general)

e Example: a for-loop # prints digits 1-10

Python
for counter in range(l, 11):
print counter

R
for (counter in 1:10) {
print (counter)

}

JavaScript
for (var counter = 1l; counter < 11; counter++)

{

console.log(counter);

}

Programming (in general)

e Example: an if-else statement
Python
if ieyPress —= iy # JavaScript
s if (keyPress === 'y')
response = ‘yes
elif keyPress == ‘n’: { o .
response = ‘no’ y response = yes'i
else: : D,
response = ‘other’ ?lse 1f (keyPress === 'n’')
response = 'no’;
R }
if (keyPress == 'y') { else
response <- 'yes' {
} else if (keYPreSS == 'n') { response — 'Otherl;
response <- 'no’ }
} else {
response <- 'other'
} 6

Programming (in general)

e Once you learn one programming language:

— it’s relatively easy to learn other languages
because you already know the basic concepts
and principles of programming

— (although of course it depends on the

language, and it doesn’t mean no effort is
required)

Programming (in general)

e What’s useful regardless of language is
good programming practices

Good programming practices

First, think high-level

Write programs for people, not computers

Let the computer do the work

Make incremental changes

Don’t repeat yourself (or others)

Plan for mistakes

Optimize software only after it works correctly
Document design and purpose, not mechanics

O O N UL A WwWDhRE

Collaborate
10. Ensure reproducibility

9
(largely based on Wilson et al., 2014)

1. First, think high-level

e You want to ensure that the program will do what
you want it to do

e and that it will do it in the best way

10

1. First, think high-level

e Start with pseudocode

— before writing any actual code, think what you
want your program to do

— it’s useful to make an outline using
pseudocode (in plain words)

11

1. First, think high-level

“mr this program tests whether an integer is odd or
even “rmrn

get an integer
test whether the integer is odd or even
output the answer

12

1. First, think high-level

e Come up with specific algorithms

— algorithm: the approach or method used to
solve a problem

13

1. First, think high-level

“mr this program tests whether an integer is odd or
even “rmrn

get an integer
test whether the integer is odd or even ??
output the answer

14

1. First, think high-level

“mr this program tests whether an integer is odd or
even “rmrn

get an integer

test whether the integer is odd or even
divide the integer by 2
check the remainder of the division
if the remainder is 0, the integer is even
otherwise, the integer is odd

output the answer

15

1. First, think high-level

e Then, you can implement your program in a
specific language

16

1. First, think high-level

“mr this program tests whether an integer is odd or
even “rmrn

get an integer

user num = int(raw input(”Hi! Enter an integer: "))

test whether the integer is odd or even, and
output the answer

remainder = user num % 2 # uses the modulus operator

if remainder == 0:

print “This integer is even.”
else:

print “This integer is odd.”

17

2. Write programs for people, not computers

e Make your programs easily readable and
understandable by others
— this includes the future-you!!

e This will facilitate program maintenance (when
you need to make changes), as well as sharing
programs

18

2. Write programs for people, not computers

e Break programs into chunks, easily
understandable single tasks
— aesthetically: spaces, empty lines, tabs

(tabs are required in Python, but not in all
programming languages)

— conceptually: design programs in modules

(more about modules later on)

19

2. Write programs for people, not computers

x this one is hard to read

“mr this program tests whether an integer is odd or
even “rmrn

get an integer

user num=int(raw input(“Hi! Enter an integer: *))
test whether the integer is odd or even, and
output the answer

remainder=user num%2 # uses the modulus operator
if remainder==0:
print “This integer is even.”

else:
print “This integer is odd.”

20

2. Write programs for people, not computers

“ this one is more readable: it has spaces and empty lines

“mr this program tests whether an integer is odd or
even “rmrn

get an integer
user num = int(raw input(”Hi! Enter an integer: "))

test whether the integer is odd or even, and
output the answer

remainder = user num % 2 # uses the modulus operator

if remainder == 0:

print “This integer is even.”
else:

print “This integer is odd.”

21

2. Write programs for people, not computers

e Make names consistent, distinctive, and
meaningful

— don’t use non-descriptive names like a or foo
(unless it’s a counter/index variable)

— don’t use names that are very similar like
results and resultsl

22

2. Write programs for people, not computers

x variable names are meaningless

“mr this program tests whether an integer is odd or
even “mnn

get an integer

fred = int(raw input(“Hi! Enter an integer: *))

test whether the integer is odd or even, and
output the answer

foo = fred % 2 # uses the modulus operator

if foo == 0:

print “This integer is even.”
else:

print “This integer is odd.”

23

2. Write programs for people, not computers

“ here, the variable names are easier to interpret

“mr this program tests whether an integer is odd or
even “rmrn

get an integer
user num = int(raw input(”Hi! Enter an integer: "))

test whether the integer is odd or even, and
output the answer

remainder = user num % 2 # uses the modulus operator

if remainder == 0:

print “This integer is even.”
else:

print “This integer is odd.”

24

2. Write programs for people, not computers

e Make names consistent, distinctive, and
meaningful

— don’t make names too descriptive

theAmountOfMoneyWeMadeThisYear =
theAmountOfMoneyLeftAtTheEndOfTheYear - x
theAmountOfMoneyAtTheStartOfTheYear

“ moneyMade = moneyAtEnd - moneyAtStart

25

2. Write programs for people, not computers

e Bottomline about naming variables:

e don’t be lazy! put thought into your variable
names

26

2. Write programs for people, not computers

e Make code style and formatting consistent

— it’s easier to read if you pick one style (e.g.,
MyFunction or my_function)

27

3. Let the computer do the work

e You want to avoid silly mistakes and save time

28

3. Let the computer do the work

e Don’t repeat commands manually
— write script files and save them

— build separate smaller programs that are
linked together so that a single command can
regenerate everything

< makefile

= Makefile resources:

» software-carpentry.org/v4/make/

» www.slideshare.net/giovanni/makefiles-bioinfo

» www.gnhu.org/software/make/manual/make.html

29

3. Let the computer do the work

e Write functions

— if you find yourself writing a similar piece of
code multiple times, write a function instead

— “a function is a block of organized, reusable
code that is used to perform a single, related
action” (tutorialspoint.com/python)

— Python has many built-in functions: e.g., print()
— but you can also define your own functions

30

3. Let the computer do the work

e Write functions

def functionname (parameters):
“#mr function description “""
code
code
code

31

3. Let the computer do the work

e Write functions

def countsToProbs(countsVector):
“#mm This function takes as input a vector of counts,

transforms them into probabilities, and outputs
vector of probabilities. “""

vectorSum = sum(countsVector)

probsVector = []

for count in countsVector:
probsVector.append(float(count)/vectorSum)

return(probsVector)

A 1.my_function.py

32

I

4. Make incremental changes

e The goal is to avoid unintended functionality, and
make debugging efficient

33

4. Make incremental changes

e Work in small steps

— don’t write the whole program from beginning
to end, and only run it once you’re done
e it’s likely not to work!
e and then it’s hard to find the bug

34

4. Make incremental changes

e Work in small steps
— instead, write a small chunk and then test it

— make sure the chunk is doing what it’s
supposed to

e to debug use printing and examin your variables
from the shell

— only then move on to the next chunk

e 2.get_subject_data.py

35

5. Don’t repeat yourself (or others)

Re-use code instead of rewriting it

— there’s plenty of code freely available on the
web

— look for packages, modules, functions that
might solve your problem before trying to
write your own code

e module: a file consisting of Python code; it can
define functions, variables, classes (for OOP)

e package: a collection of modules

36

5. Don’t repeat yourself (or others)

e Re-use code instead of rewriting it
— using modules & packages

import os # os includes miscellaneous operating
system interfaces

import os, sys # sys contains system-level
information, such as the version

of Python you’re running

from sys import path

A 3.get _subject _data_os.py

37

5. Don’t repeat yourself (or others)

e Modularize code rather than copying and
pasting
— write your own code with independent
modules that contain everything necessary to
execute only one aspect of the desired
functionality
e e.g., save your functions in separate files

— this prevents you from introducing bugs (when
you change or fix a piece of code, but don’t
change it in “code clones”)

38

5. Don’t repeat yourself (or others)

e Modularize code rather than copying and
pasting

from my functions import countsToProbs

you can call countsToProbs() here

— This works if my_functions.py is in the same directory

— But you can put my_functions.py in another directory,
and add that directory to your Python path; this will let
you access it from any other program you write

import sys
sys.path.append(”/home/me/mypy”)
from my functions import countsToProbs

39

6. Plan for mistakes

e Remember that everybody makes mistakes

— mistakes are inevitable, so be prepared to
make them

— |learn efficient debugging techniques

40

6. Plan for mistakes

e Work in small steps
— as discussed in point 4

41

6. Plan for mistakes

e Add assertions to programs to check their
operation

— an assertion: a statement that something holds
true at a particular point in a program

— assertions can be used to ensure that inputs
are valid, outputs are consistent, etc.

e 3.get_survey data_assert.py

42

7. Optimize software only after it works
correctly

e Always begin by writing code in the highest-level
language possible

low vs. high-level languages

— it’s a continuum: from languages “closer to the
hardware” (e.g., C) to those with strong
abstraction from the details of the computer
(e.g., Python, R)

43

7. Optimize software only after it works
correctly

e Always begin by writing code in the highest-level
language possible

low vs. high-level languages

— it’s easier and faster to code in high-level
languages; the code is more comprehensible

— but low-level languages are more efficient:
programs can be made to run very quickly

44

7. Optimize software only after it works
correctly

e Always begin by writing code in the highest-level
language possible

— even if you know you will ultimately need a
low-level language, prototype in a high-level
language

— this helps evaluate design decisions quickly

— it also helps determine which parts are worth
optimizing

45

7. Optimize software only after it works
correctly

e Also apply this rule to code optimization within a
language

— there might be more efficient ways of writing a
particular piece of code

— but if it’s complicated to implement, wait to
optimize until you have your program working

— you might end up changing the design as you
work through your program

— or perhaps this particular optimization will turn
out not to be worth the time

46

8. Document design and purpose, not
mechanics

e Add informative comments
— Comments are very important!

— They help you not waste time on rethinking

what a particular piece of code was supposed
to do

47

8. Document design and purpose, not
mechanics

e Add informative comments

— at the beginning of any program, add a bigger
comment with the program description

" This program combines individual subject files
into one file. “""

48

8. Document design and purpose, not
mechanics

e Add informative comments

— at the beginning of each function, describe
what it does and its inputs and outputs

def countsToProbs(countsVector):

“#rmr This function takes as input a vector of counts,

transforms them into probabilities, and outputs

vector of probabilities. “"”

vectorSum = sum(countsVector)
probsVector = []
for count in countsVector:

probsVector.append(float(count)/vectorSum)

return(probsVector)

49

8. Document design and purpose, not
mechanics

e Add informative comments

— add other comments about the logic of your
code throughout

store survey info in a dictionary with subject
number as a key and the rest as the value
surveyDict = {}

for line in rf:
line = line.strip().split('\t")
subjNum = line[0]
subjInfo = ', '.join(line[1l:])
surveyDict[subjNum] = subjInfo

50

8. Document design and purpose, not
mechanics

e Add informative comments

— don’t add comments just for the sake of
commenting: some comments are useless, and

clog the code

— (although it’s fine to comment more when
you’re learning to program)

51

store survey info in a dictionary with subject
number as a key and the rest as the value

initialize dictionary for survey data
surveyDict = {}

loop through each line of the survey file
for line in rf:

strip end of line char, and split the line into a list
by tab
line = line.strip().split('\t")

save subject number
subjNum = line[O0]

join all list items (except subject number) by tab

subjInfo = ','.join(line[1l:])

save info in the dictionary
surveyDict[subjNum] = subjInfo

x some of the commented code is self-evident -

some comments only describe the mechanics

8. Document design and purpose, not
mechanics

e Important rules for commenting
— use plain language
— add comments as you go

e nobody likes documenting code: you are unlikely to
go back and add comments later

e it’s easier to do when the logic is fresh in your mind

e it can help you structure the code better: if a
substantial description of a piece of code is needed,
consider reorganizing the code so that it’'s more
straightforward

— get in the habit of commenting early on!!

53

9. Collaborate

e Have your code reviewed by somebody else

— reviews of code can eliminate bugs and
improve readability

— this is also a good way to spread knowledge
and good practices around a team

e code reviews help ensure that critical knowledge
isn’t lost when the programmer leaves

54

9. Collaborate

e Have your code reviewed by somebody else

— extreme version: pair programming
e many programmers find it intrusive

e but it can be helpful when tackling particularly
tricky problems

55

10. Ensure reproducibility

e Document everything

— people largely overestimate how much they
will remember

— keep read-me files that explain what you did

— your records should be understandable by
another person

— keep all the files organized, with meaningful
names

56

10. Ensure reproducibility

e Use a version control system (VCS):
e.g., Git, Mercurial, Subversion

— VCS stores a snapshot of a project’s files in a
repository

— users can modify their working copy, and then
commit changes to the repository

57

10. Ensure reproducibility

e Use a version control system (VCS):
e.g., Git, Mercurial, Subversion
— good for collaborations
e \/CS resolves any conflicts before accepting changes

e it stores the entire history of the files, allowing
different versions to be retrieved and compared

e it also stores metadata: users’ comments on what
was changed

58

Good programming practices

First, think high-level

Write programs for people, not computers

Let the computer do the work

Make incremental changes

Don’t repeat yourself (or others)

Plan for mistakes

Optimize software only after it works correctly
Document design and purpose, not mechanics

O 0 N O U W

Collaborate
10. Ensure reproducibility

59
(largely based on Wilson et al., 2014)

Python resources

e Python tutorials
— www.tutorialspoint.com/python

— docs.python.org/3/tutorial

— (plenty more on the web)

e Python documentation
— docs.python.org

e Software Carpentry: general computing
(mission: teaching scientists basic computing skills)

— software-carpentry.org

60

